Table 1. Atom positions $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{4}\right)$

	$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$			
	x	y	z	$U_{\text {cq }}$
Mg	0	3878 (2)	2500	268
Cl	-995 (4)	2044 (3)	3886 (2)	286
C2	456 (4)	3034 (3)	4294 (2)	265
C3	1674 (4)	2056 (3)	4844 (2)	254
O11	-1824 (3)	1157 (2)	4316 (2)	378
012	-1280 (3)	2230 (3)	3130 (1)	370
O2	1346 (3)	3769 (2)	3656 (1)	300
O3	2222 (3)	742 (2)	4421 (1)	314
010	-1707 (4)	5458 (4)	2853 (2)	550

difference Fourier synthesis showed a maximum value of 0.25 and a minimum value of -0.371 e \AA^{-3}; atom scattering factors from International Tables for X-ray Crystallography (1974).

Fig. 1 shows the anion and numbering scheme and Fig. 2 the packing of the molecules in the unit cell. Table 1* lists atom parameters; Table 2 gives bond distances and angles. Each $\mathbf{M g}^{2+}$ ion bridges two galactarate ions and the coordination of the $\mathbf{M g}^{2+}$ ion is octahedral as is normally found (Brown, 1988).

Related literature. The galactarate ion has been studied as the Ca^{2+} and Ba^{2+} salts (Sheldrick, Mackie \& Akrigg, 1989), while the coordination of Ca^{2+} with the glucarate ion has been established (Burden, Mackie \& Sheldrick, 1985; Taga \& Osaki, 1976) where the Ca-O distances agree with values given by Dheu-Andries \& Perez (1983).

[^0]Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s

C1-O11	$1 \cdot 242$ (4)	C2-C3	1.529 (4)
C1-O12	1.260 (4)	C3-O3	1.419 (3)
C1-C2	1.535 (4)	C3-C3'	1.547 (5)
C2-O2	1.425 (3)		
O11-C1-O12	124.9 (3)	O2-C2-C3	113.1 (2)
$\mathrm{O} 11-\mathrm{C} 1-\mathrm{C} 2$	118.8 (3)	C2-C3-O3	110.6 (2)
O12-C1-C2	116.3 (2)	C2-C3-C3'	101.3 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	$107 \cdot 0$ (2)	O3-C3-C3'	99.3 (3)
C1-C2-C3	$110 \cdot 1$ (2)		
Magnesium coordination			
$\mathrm{Mg}-\mathrm{O} 12$ (O12')	2.050 (2)	$\mathrm{Mg}-\mathrm{O} 2\left(\mathrm{O}^{\prime}\right)$	$2 \cdot 117$ (2)
$\mathrm{Mg}-\mathrm{Ol0}\left(\mathrm{Ol}^{\prime}\right)$	2.003 (3)		
$\mathrm{O} 2-\mathrm{Mg}-\mathrm{O} 12$	74.8 (1)	O12-Mg-O12'	$90 \cdot 1$ (1)
$\mathrm{O} 10-\mathrm{Mg}-\mathrm{O} 12$	90.9 (1)	O10-Mg-O10'	$92 \cdot 3$ (2)
$\mathrm{O} 10-\mathrm{Mg}-\mathrm{O} 2$	93.8 (1)		

References

Brown, I. D. (1988). Acta Cryst. B44, 545-553.
Burden, C., Mackie, W. \& Sheldrick, B. (1985). Acta Cryst. C41, 693-695.
Dheu-Andries, M. L. \& Perez, S. (1983). Carbohydr. Res. 124, 324-332.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO 78. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Sheldrick, B, Mackie, W. \& Akrigg, D. (1989). Acta Cryst. C45, 191-194.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS 86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Taga, T. \& Osaki, K. (1976). Bull. Chem. Soc. Jpn, 49, 1517-1520.

Acta Cryst. (1989). C45, 1073-1076

Structure of the Sodium Salt of a Thiazolopyrimidine, a Guanine Analog

By Steven B. Larson, Jack D. Anderson, Howard B. Cottam and Roland K. Robins
Nucleic Acid Research Institute, 3300 Hyland Avenue, Costa Mesa, CA 92626, USA

(Received 26 September 1988; accepted 16 November 1988)

Abstract

Sodium pentahydrate salt of 2,5 -diamino-[1,3]thiazolo[4,5- d]pyrimidin-7(6H)-one, $\left[\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{5}-\right.$ $\mathrm{OS}]^{-} .\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{+}, \quad M_{r}=295 \cdot 25$, triclinic, $P \overline{\mathrm{I}}, \quad a=$ 6.9985 (9) $, \quad b=8.8182(15), \quad c=10.868$ (2) $\AA, \quad \alpha=$ 111.83 (3),$\quad \beta=99.83$ (2) $, \quad \gamma=94.18(2)^{\circ}, \quad V=$ $606.6(2) \AA^{3}, Z=2, D_{x}=1.616 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{CuK} \alpha)=$

$1.54178 \AA, \quad \mu=30.009 \mathrm{~cm}^{-1}, \quad F(000)=308, \quad T=$ $295 \mathrm{~K}, R=0.0358$ for 2411 reflections ($F \geq 4 \sigma_{F}$). The thiazole and pyrimidinone rings are planar [r.m.s. deviation: 0.0059 (6) and 0.0095 (6) \AA, respectively]; the dihedral angle between these planes is $1 \cdot 13(5)^{\circ}$. The $\mathrm{C}-\mathrm{S}$ bond lengths are nearly equivalent © 1989 International Union of Crystallography

Table 1. Summary of data collection and structure refinement for (1)
(A) Data collection $(295 \mathrm{~K})^{*} \dagger$

Mode

Scan range (${ }^{\circ}$)
Background
Scan rate (${ }^{\circ} \min ^{-1}$)
Exposure time (h)
Stability-correction range on I
2θ range (${ }^{\circ}$)
Range in $h k l$, min.
max.
Total reflections, measured, unique
Crystal dimensions (mm)
Crystal volume (mm^{3})
Crystal faces
Transmission-factor range
(B) Structure refinement \ddagger

Reflections used, m ($F \geq 4 \sigma_{F}$)
Number of variables, n
Extinction parameter
Goodness of fit, S
$R, w R$
R for all data
Max., av. Δ / σ
Max., min. density in ΔF map (e \AA^{-3})

$\omega-2 \theta$ scan

$0.80+0.15 \tan \theta$
Scan 0.25 times scan range
before and after scan
1.4-8.3
17.4
1.000-1.036
3.0-152.0
$0,11,13$
8,11,13
2521, 2521
$0.40 \times 0.30 \times 0.075$
0.00792
\{010\}; \{001\}; \{011̄\}; \{201̄\}
$0.442-0.805$

2411

218
$7.4(3) \times 10^{-6}$
2.352
$0.0358,0.0563$
0.0373
$0.0099,0.0008$
$0.49,-0.39$

* Unit-cell parameters were obtained by least-squares refinement of the setting angles of 25 reflections with $50.2<2 \theta<59.6^{\circ}$.
\dagger Enraf-Nonius CAD-4 diffractometer with a graphite monochromator was used. Data reduction was accomplished with the SDP-Plus software (Frenz, 1985). Crystal and instrument stability was monitored by remeasurement of 3 check reflections (153; 244; 331) every hour. A linear fit of the intensities of these reflections was used to correct the data.
\ddagger Function minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$, where $w^{-1}=\left(\sigma_{F}^{2}+\right.$ $0.0004 F^{2}$).
[1.7397 (15) and 1.751 (2) \AA] and the $\mathrm{C}-\mathrm{S}-\mathrm{C}$ angle is 88.53 (8) ${ }^{\circ}$. The amino groups are distinct having $\mathrm{C}-\mathrm{N}$ bond lengths of 1.341 (2) and 1.382 (2) \AA. The only interaction between heterocycles is a possible $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bond $[d(\mathrm{~N} \cdots \mathrm{~S})=3.435(2) \AA$; $d(\mathrm{H} \cdots \mathrm{S})=$ $2.82(3) \AA$ and $\angle \mathrm{N}-\mathrm{H} \cdots \mathrm{S}=124 \cdot(2)^{\circ} \mathrm{J}$. All other hydrogen bonding involves the Na -ion octahedra which form centrosymmetric pairs having a common edge. The average $\mathrm{Na} \cdots \mathrm{O}$ distance is 2.44 (8) \AA [range: $2 \cdot 326$ (2)-2.585(11) \AA, including both sites of a disordered $\mathrm{H}_{2} \mathrm{O}$].

Experimental. The title compound (1) was synthesized by the procedure outlined by Baker \& Chatfield (1969). Yellowish-brown crystals were grown by cooling a hot $10 \% \mathrm{NaOH}$ solution of the free heterocycle. The data collection and refinement are summarized in Table 1.

(1)

Table 2. Positional and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for non-H atoms in (1)

	\boldsymbol{x}	y	z	$U_{\text {eq }}^{*}$
N1	$0.8209(2)$	$0.50593(15)$	$0.63335(12)$	$0.0284(4)$
C2	$0.8292(2)$	$0.6493(2)$	$0.62078(14)$	$0.0268(5)$
S3	$0.74467(5)$	$0.64112(4)$	$0.45691(3)$	$0.0267(2)$
C4	$0.6104(2)$	$0.3068(2)$	$0.27005(14)$	$0.0246(5)$
N5	$0.5852(2)$	$0.14687(15)$	$0.25756(13)$	$0.0291(4)$
C6	$0.6452(2)$	$0.1136(2)$	$0.3674(2)$	$0.0286(5)$
N7	$0.7248(2)$	$0.2206(2)$	$0.49419(13)$	$0.0292(4)$
C8	$0.7447(2)$	$0.3800(2)$	$0.50856(14)$	$0.0244(5)$
C9	$0.6918(2)$	$0.4274(2)$	$0.40066(14)$	$0.0241(5)$
N10	$0.8986(2)$	$0.7948(2)$	$0.72455(15)$	$0.0375(5)$
O11	$0.5616(2)$	$0.34113(13)$	$0.16466(11)$	$0.0308(4)$
N12	$0.6314(3)$	$-0.0514(2)$	$0.3472(2)$	$0.0438(6)$
Na	$0.9234(9)$	$0.28524(7)$	$-0.08879(6)$	$0.0318(2)$
OW1	$1.0852(2)$	$0.50864(15)$	$-0.13152(11)$	$0.0354(4)$
OW2	$0.7007(2)$	$0.09834(14)$	$-0.04547(12)$	$0.0364(4)$
OW3	$0.9313(2)$	$0.1020(2)$	$-0.32029(13)$	$0.0395(5)$
OW4	$1.1889(2)$	$0.1822(2)$	$-0.0042(2)$	$0.0527(6)$
OW5 \dagger	$0.6348(2)$	$0.3770(2)$	$-0.1854(2)$	$0.0424(7)$
OW5D \dagger	$0.587(2)$	$0.3839(12)$	$-0.1242(13)$	$0.055(3)$

* $U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} A_{i j}$, where $A_{i j}$ is the dot product of the i th and j th direct-space unit-cell vectors.
\dagger Populations are $0.82 \overline{2} 9$ (7):0.171 (7) OW5:OW5D; thermal parameter for OW5D is U, not $U_{\text {eq }}$.

Table 3. Bond lengths (\AA) and bond angles $\left(^{\circ}\right)$ is (1)

1	2	3	1-2	1-2-3
C2	N1	C8	1.320 (2)	109.72 (13)
S3	C2	N10	1.751 (2)	120.43 (14)
S3	C2	N1		115.92 (9)
N 10	C2	N1	1.341 (2)	123.6 (2)
C9	S3	C2	1.7397 (15)	88.53 (8)
N5	C4	C9	1.360 (2)	116.90 (15)
C9	C4	011	1.408 (2)	123.33 (14)
O11	C4	N5	1.288 (2)	119.77 (11)
C6	N5	C4	1.340 (2)	118.65 (11)
N7	C6	N 12	1.339 (2)	115.5 (2)
N7	C6	N5		128.00 (14)
N12	C6	N5	1.382 (2)	116.44 (13)
C8	N7	C6	1.349 (2)	$113 \cdot 80$ (15)
C9	C8	N1	$1 \cdot 388$ (2)	$116 \cdot 13$ (13)
C9	C8	N7		122.77 (11)
N1	C8	N7	1.380 (2)	121.10(15)
S3	C9	C4		130.47 (14)
S3	C9	C8		109.70 (9)
C4	C9	C8		119.83 (14)
OW1	Na	OW2	2.432 (2)	166.94 (5)
OW2	Na	OW3	2.412 (2)	96.98 (5)
OW3	Na	OW4	2.446 (2)	90.27 (6)
OW4	Na	OW5	2.326 (2)	176.66 (6)
OW5	Na	OW1*	2.445 (2)	88.52 (7)
OW1*	Na	OW1	2.423 (2)	86.58 (5)
OW1	Na	OW3		87.80 (5)
OW1	Na	OW4		101.89 (6)
OW1	Na	OW5		$80 \cdot 62$ (6)
OW2	Na	OW4		90.27 (6)
OW2	Na	OW5		87.42 (6)
OW2	Na	OW1*		87.89 (5)
OW3	Na	OW5		87.61 (6)
OW3	Na	OW1*		173.63 (5)
OW4	Na	OW1*		93.81 (6)
OW5D	Na	OW1	$2 \cdot 585$ (11)	91.7 (3)
OW5D	Na	OW2		75.4 (3)
OW5D	Na	OW3		101.6 (3)
OW5D	Na	OW4		162.3 (3)
OW5D	Na	OW1*		75.6 (3)

[^1]The positions of the Na ion and non- H atoms of the heterocycle were obtained by direct methods (MULTAN82; Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982); the five O atoms of the waters of solvation were located in a difference map. A difference map calculated at $R=0.058$ revealed 14 H atoms ($0.28-0.66 \mathrm{e} \AA^{-3}$) and a peak of $1.15 \mathrm{e} \AA^{-3}$ near $\mathrm{O} W 5$ and within coordinating distance to the Na ion. This latter peak was assumed to be a disordered position of OW5 since it is too close to OW5 to be present in the same asymmetric unit with OW5. The occupancies of the $\mathrm{OW5} / \mathrm{OW5D}$ pair refined to 0.829 (7): 0.171 (7) under the constraint that their sum be 1.00 . During the final cycles, all atomic positions, site occupancy of $0 W 5 / \mathrm{OW5D}$, anisotropic thermal

Fig. 1. Perspective drawing of (1) indicating atom labeling. Thermal ellipsoids are drawn at the 50% probability level.

Fig. 2. Perspective drawing of the molecular packing as viewed perpendicular to the plane of the heterocycle. The hydrogen bonding is indicated by thin lines.

Table 4. Hydrogen bonding in (1)

| | D-H $\cdots A$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

parameters for non- H atoms and isotropic thermal parameters for H atoms were varied except that $\mathrm{O} W 5 D$ was refined isotropically, the H atoms of the water molecules were given a single isotropic thermal parameter which was refined, and the waters were constrained to have the same geometry [i.e. all $d(\mathrm{O}-\mathrm{H})$ and $d(\mathrm{H} \cdots \mathrm{H})$ were equivalent but varied]. No H atoms were found for $0 W 5 D$, but $\mathrm{H} W 5 A$ is within bonding distance and therefore $\mathrm{H} W 5 A$ was given full occupancy while the occupancy of $\mathrm{H} W 5 B$ was equated to that of OW5. A full-matrix least-squares refinement was used (SHELX76; Sheldrick, 1976). Scattering factors and anomalous-dispersion corrections were taken from International Tables for X-ray Crystallography (1974) except those for H which were taken from Stewart, Davidson \& Simpson (1965). Data were reduced with SDP-Plus (Frenz, 1985); least-squares planes calculated with program PLANES from Cordes (1983); thermal-ellipsoid plots produced with ORTEPII (Johnson, 1976). Parameter, geometry and structure-factor-amplitude tables were prepared with programs FUER and LISTFC (Larson, 1980).

Atomic coordinates are listed in Table 2;* Na coordination, bond lengths and bond angles are given in Table 3. Fig. 1 is a perspective drawing of the molecule illustrating atom labeling; Fig. 2 illustrates the intermolecular hydrogen bonding which is numerically detailed in Table 4.

Related literature. No thiazolopyrimidine structures have been reported (Cambridge Structural Database, 1987).

[^2]
References

Baker, J. A. \& Chatfield, P. V. (1969). J. Chem. Soc. C, pp. 603-606.

Cambridge Structural Database (1987). Univ. Chemical Laboratory, Lensfield Road, Cambridge, England.
Cordes, A. W. (1983). Personal communication.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Larson, S. B. (1980). PhD Dissertation, Brigham Young Univ., USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1989). C45, 1076-1077

Structure of Chloro(3,7-diazanonanediamide)nickel(II) Perchlorate

By Chung Chieh,* Fang-Jy Wu, Sue-Lein Wang, \dagger Ching-Hohn Len and Chung-Sun Chung \dagger
Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043

(Received 23 June 1988; accepted 25 January 1989)

Abstract. $\left[\mathrm{NiCl}\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right] \mathrm{ClO}_{4}, \quad M_{r}=381 \cdot 8$, triclinic, $\quad P \overline{1}, \quad a=7.822$ (3),$\quad b=7.924$ (3),$\quad c=$ 12.637 (4) $\AA, \quad \alpha=107.37$ (3),$\quad \beta=91.52$ (3),$\quad \gamma=$ $110.50(3)^{\circ}, \quad V=692.6(5) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.831 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=18.2 \mathrm{~cm}^{-1}$, $F(000)=392, T=296 \mathrm{~K}, R=4.37 \%, w R=4.79 \%$ for 2189 independent reflections with $I>3.0 \sigma(I)$. This compound is a five-coordinate Ni complex. The nickel(II) ion is in a slightly distorted square pyramid with the diaminodiamide equatorial and a Cl anion axial.

Experimental. The ligand, $L-1,3,1$, was prepared from 1,3-propanediamine ($41.5 \mathrm{ml}, 0.5 \mathrm{~mol}$) and 2 -chloroacetamide $(55.8 \mathrm{~g}, \quad 0.6 \mathrm{~mol})$ in N, N^{\prime}-dimethylformamide (50 ml) by heating under reflux for 2 h . The title compound was obtained by adding $L-1,3,1$ $(5.26 \mathrm{~g})$ to an aqueous solution of nickel(II) perchlorate $(4.76 \mathrm{~g})$ and heating until it was completely dissolved; the solution was filtered immediately while hot. After evaporation of the filtrate, deep-blue rod-like crystals of $[\mathrm{NiCl}(\mathrm{L}-1,3,1)] \mathrm{ClO}_{4}$ were formed. A crystal $0.22 \times$ $0.28 \times 0.40 \mathrm{~mm}$ was selected for the determination of lattice constants (18 reflections, $11.0 \leq 2 \theta \leq 27.4^{\circ}$, Mo $K \alpha$ radiation, Nicolet $R 2 m / V$ diffractometer, graphite monochromator) as well as for the data collection. Corrections for absorption effects were based on ψ scans of a few suitable reflections with χ values close to 90°. Max. $/ \mathrm{min}$. transmission factors: $0 \cdot 925 / 0 \cdot 622$. Total of 3007 reflections measured with $[(\sin \theta) / \lambda]_{\max }=0.595 \AA^{-1}$ and in the range $0 \leq h \leq 9$,

* On leave from the University of Waterloo, Ontario, Canada.
\dagger To whom correspondence should be addressed.
$-9 \leq k \leq 8,-15 \leq l \leq 15$. No significant variation in intensities of three standards monitored every 50 reflections. Scan width of 1.2° plus $K \alpha$ separation and scan speed $2.93-14.65^{\circ} \mathrm{min}^{-1} .2189$ unique structure amplitudes with $I>3 \cdot 0 \sigma(I)$. The structure was solved by direct methods and refined by full-matrix least squares based on F values. All of the non- H atoms were refined anisotropically. H atoms were placed in idealized positions ($\mathrm{C}-\mathrm{H}=0.96 \AA, \quad \mathrm{H}-\mathrm{C}-\mathrm{H}=$ $\left.109.4^{\circ}\right)$ and refined with fixed $U\left(0.08 \AA^{2}\right)$. At convergence $R=4.37 \%, w R=4.79 \%, w=\left[\sigma^{2}(F)+\right.$ $\left.0.00068 F^{2}\right]^{-1}, \sigma^{2}(F)$ based on counting statistics,

Table 1. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement coefficients $\left(\AA^{2} \times 10^{3}\right)$

Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	2	$U_{\text {eq }}$
Ni	2058 (1)	4438 (1)	1866 (1)	26 (1)
O(1)	1708 (3)	2054 (3)	669 (2)	34 (1)
$\mathrm{O}(2)$	-234 (3)	4545 (3)	1269 (2)	37 (1)
$\mathrm{N}(1)$	1907 (4)	6437 (4)	3223 (2)	31 (1)
$\mathrm{N}(2)$	3860 (4)	3763 (4)	2646 (2)	32 (1)
$\mathrm{N}(3)$	2495 (5)	-495 (5)	282 (3)	44 (1)
$\mathrm{N}(4)$	-1607 (4)	6609 (5)	1348 (3)	38 (1)
C(1)	2743 (4)	1249 (4)	857 (3)	31 (1)
C(2)	4384 (5)	2397 (5)	1774 (3)	37 (1)
C(3)	5433 (5)	5461 (5)	3376 (3)	33 (1)
C(4)	4778 (5)	6715 (5)	4282 (3)	34 (1)
C(5)	3737 (5)	7762 (5)	3906 (3)	34 (1)
C(6)	903 (5)	7448 (5)	2825 (3)	37 (1)
C(7)	-389 (4)	6106 (5)	1749 (3)	29 (1)
$\mathrm{Cl}(1)$	4198 (1)	6812 (1)	1027 (1)	36 (1)
$\mathrm{Cl}(2)$	-761 (1)	1672 (1)	3595 (1)	42 (1)
$\mathrm{O}(4)$	-331(7)	1048 (6)	2507 (4)	90 (2)
O(5)	-1784 (5)	65 (5)	3884 (4)	86 (2)
O(6)	-1702 (9)	2888 (8)	3663 (6)	131 (4)
O(7)	936 (8)	2694 (9)	4287 (4)	140 (3)

© 1989 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51803 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Denotes equivalent position $2-x, 1-y,-z$.

[^2]: * Tables of anisotropic thermal parameters, H -atom parameters, bond lengths and angles involving H atoms, torsion angles, least-squares planes and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51622 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

